ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.

ઊંચાઈ  સેમીમાં 

$70-75$ $75-80$ $80-85$ $85-90$ $90-95$ $95-100$ $100-105$ $105-110$ $110-115$

બાળકોની  સંખ્યા

$3$ $4$ $7$ $7$ $15$ $9$ $6$ $6$ $3$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Interval Frequency ${f_i}$  Mid-point ${f_i}$ ${y_i} = \frac{{{x_i} - 92.5}}{5}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$70-7$ $3$ $72.5$ $-4$ $16$ $-12$ $48$
$75-80$ $4$ $77.5$ $-3$ $9$ $-12$ $36$
$80-85$ $7$ $82.5$ $-2$ $4$ $-14$ $28$
$85-90$ $7$ $87.5$ $-1$ $1$ $-7$ $7$
$90-95$ $15$ $92.5$ $0$ $0$ $0$ $0$
$95-100$ $9$ $97.5$ $1$ $1$ $9$ $9$
$100-105$ $6$ $102.5$ $2$ $4$ $12$ $24$
$105-110$ $6$ $107.5$ $3$ $9$ $18$ $54$
$110-115$ $3$ $112.5$ $4$ $16$ $12$ $48$
  $60$       $6$ $254$

Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h$

$ = 92.5 + \frac{6}{{60}} \times 5 = 92.5 + 0.5 = 93$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right]$

$=\frac{25}{3600}(15204)=105.58$

$\therefore$ Standard deviation $(\sigma)=\sqrt{105.58}=10.27$

Similar Questions

નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?

ગુણ

$10-20$ $20-30$ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$
સમૂહ  $A$ $9$ $17$ $32$ $33$ $40$ $10$ $9$
સમૂહ $B$ $10$ $20$ $30$ $25$ $43$ $15$ $7$

જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.

  • [JEE MAIN 2021]

વિધાન $- 1$  : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.

વિધાન $- 2$  : પ્રથમ $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$  છે અને પ્રથમ  $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.

ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.

  • [JEE MAIN 2023]

બે માહિતી ગણ પૈકી દરેકનું કદ $5$ છે. જો વિચરણો $4$  એ $5$ આપેલું હોય અને તેમને અનુરૂપ મધ્યકો અનુક્રમે $2$ અને $4$ હોય તો, સંયુક્ત માહિતીના ગણનું વિચરણ કેટલું થાય ?