यदि $x, y, z$ एक समांतर श्रेढी में हैं तथा $\tan ^{-1} x, \tan ^{-1} y$ एवं $\tan ^{-1} z$ भी समांतर श्रेढ़ी में हैं, तो

  • [JEE MAIN 2013]
  • A

    $x = y = z$

  • B

    $x = y = - z$

  • C

    $x = 1;y = 2;z = 3$

  • D

    $x = 2;y = 4;z = 6$

Similar Questions

माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$

  • [JEE MAIN 2019]

किसी समान्तर श्रेणी का $n$ वाँ पद $(2n - 1)$ है, तो उस श्रेणी के $n$ पदों का योग होगा

यदि $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ समान्तर श्रेणी में हों, तो $x$  का मान होगा

  • [AIEEE 2002]

यदि ${a_1},\;{a_2},............,{a_n}$ एक समांतर श्रेणी में हैं, जिसका सार्वान्तर $d$ है, तब श्रेणी $\sin d(\cos {\rm{ec}}\,{a_1}.{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$ $ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$

माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है

  • [JEE MAIN 2018]