The sum of the first four terms of an $A.P.$ is $56 .$ The sum of the last four terms is $112.$ If its first term is $11,$ then find the number of terms.
Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$
Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$
Sum of last four terms
$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$
$=4 a+(4 n-10) d$
According to the given condition,
$4 a+6 d=56$
$\Rightarrow 4(11)+6 d=56$ [ Since $a=11$ (given) ]
$=6 d=12$
$=d=2$
$\therefore 4 a+(4 n-10) d=112$
$\Rightarrow 4(11)+(4 n-10) 2=112$
$\Rightarrow(4 n-10) 2=68$
$\Rightarrow 4 n-10=34$
$\Rightarrow 4 n=44$
$\Rightarrow n=11$
Thus, the number of terms of the $A.P.$ is $11 .$
Let $a_{1}, a_{2} \ldots, a_{n}$ be a given $A.P.$ whose common difference is an integer and $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50,$ then the ordered pair $\left( S _{ n -4}, a _{ n -4}\right)$ is equal to
If the sum of the series $54 + 51 + 48 + .............$ is $513$, then the number of terms are
If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$
If twice the $11^{th}$ term of an $A.P.$ is equal to $7$ times of its $21^{st}$ term, then its $25^{th}$ term is equal to
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to