$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ के लिए माना $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ का एक मूल $\alpha \neq 1$ है। तो दो कथनों में
($I$) यदि $\alpha \in(-1,0)$ है, तो $a$ तथा $c$ का गुणोत्तर माध्य $b$ नहीं हो सकता।
($II$) यदि $\alpha \in(0,1)$ है, तो $\mathrm{a}$ तथा $\mathrm{c}$ का गुणोत्तर माध्य $\mathrm{b}$ हो सकता है।
($I$) तथा ($II$) दोनों सत्य है।
न तो ($I$) न ही ($II$) सत्य है।
केवल ($II$) सत्य है।
केवल ($I$) सत्य है।.
$x$ के किस मान के लिए संख्याएँ $-\frac{2}{7}, x, \frac{-7}{2}$ गुणोत्तर श्रेणी में हैं ?
किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का $5$ गुना है, तो सार्व अनुपात ज्ञात कीजिए।
यदि गुणोत्तर श्रेणी के अनंत पदों का योगफल $s$ तथा प्रथम पद $a$ है, तो सार्वअनुपात $r$ होगा
एक अनंत गुणोत्तर श्रेणी, जिसका प्रथम पद $a$ तथा सार्वानुपात $r$ है, का योग $4$ तथा द्वितीय पद $3/4$ है, तब
एक गुणोत्तर श्रेढ़ी में यदि पहले $5$ पदों के योग का उनके व्युत्क्रमों के योग से अनुपात $49$ है तथा इसके पहले तथा तीसरे पदों का योग $35$ है, तो इस गुणोत्तर श्रेढ़ी का प्रथम पद है