यदि $A + B + C = {180^o},$ तब $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $
$8\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$8\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
यदि $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$ तब निम्न में से कौन सा कथन सत्य है
$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
यदि $A + B + C = {270^o},$ तब $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $