किन्हीं तीन धनात्मक वास्तविक संख्याओं $a, b$ तथा $c$ के लिए $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ है, तो:
$a,b,c$ गुणोत्तर श्रेढ़ी में हैं
$b,c,a$ गुणोत्तर श्रेढ़ी में हैं
$b,c,a$ समांतर श्रेढ़ी में हैं
$a,b,c$ समांतर श्रेढ़ी में हैं
यदि श्रेणी $54 + 51 + 48 + .............$ का योग $513$ हो, तो पदों की संख्या है
$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।
समुच्चय $\{ n \in\{1,2, \ldots, 100\} \mid n$ तथा $2040$ का महत्तम समापवर्तक $1$ है $\}$ के सभी अवयवों का योग बराबर है ................ ।
यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा
माना $a, b, c$ एक समान्तर श्रेढ़ी में है। माना त्रिभुज जिसके शीर्ष बिन्दु $( a , c ),(2, b )$ तथा $( a , b )$ है, का केन्द्रक $\left(\frac{10}{3}, \frac{7}{3}\right)$ है। यदि समीकरण, $a x ^{2}+ bx +1=0$ के मूल $\alpha$ तथा $\beta$ है, तो $\alpha^{2}+\beta^{2}-\alpha \beta$ का मान है