यदि किसी समांतर श्रेणी $25,22,19, \ldots$ के कुछ पदों का योगफल $116$ है तो अंतिम पद ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the sum of $n$ terms of the given $A.P.$ be $116$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Here, $a=25$ and $d=22-25=-3$

$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$

$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$

$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$

$\Rightarrow 3 n^{2}-53 n+232=0$

$\Rightarrow 3 n^{2}-24 n-29 n+232=0$

$\Rightarrow 3 n(n-8)-29(n-8)=0$

$\Rightarrow(n-8)(3 n-29)=0$

$\Rightarrow n=8$ or $n=\frac{29}{3}$

Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$

$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$

$=25+(7)(-3)=25-21$

$=4$

Thus, the last term of the $A.P.$ is $4.$

Similar Questions

यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$,  तो $n$ का मान है

यदि किसी समान्तर श्रेणी के $n$ पदों का योग $2{n^2} + 5n$ हो, तो $n$ वाँ पद होगा

यदि $\log _e a, \log _e b, \log _e c$ एक $A.P.$ में हैं तथा $\log _e a-\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ भी एक $A.P.$ में हैं, तो $a: b: c$ बराबर है ..................

  • [JEE MAIN 2024]

किसी समान्तर श्रेणी के प्रथम तथा तृतीय पदों का योग $12$ है, तथा प्रथम व द्वितीय पदों का गुणनफल $24$ है, तब श्रेणी का प्रथम पद होगा

निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$