કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:
$a,b,c$ એ સમગુણોતર શ્રેણીમાં છે.
$b,c,a$ એ સમગુણોતર શ્રેણીમાં છે.
$b,c,a$ એ સમાંતર શ્રેણીમાં છે.
$a,b,c$ એ સમાંતર શ્રેણીમાં છે.
સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.
જો સમીકરણ $x^3 - 9x^2 + \alpha x - 15 = 0 $ ના બીજો સમાંતર શ્રેણીમાં હોય તો $\alpha$ ની કિમત મેળવો
$3,3^2, 3^3, ......, 3^n$ નો સમગુણોત્તર મધ્યક કયો હશે ?
જો સમાંતર શ્રેણીનું $p, q$ અને $r$ મું પદ અનુક્રમે $a, b$ અને $c$ હોય, તો $[a (q - r) + b(r - p) + c(p -q)]=.…….$
સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$