કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ
$ < \frac{1}{4}$
$ > \frac{1}{4}$
$ \ge \frac{1}{2}$
એકપણ નહિ.
એક પાસાને ઉછાળવામાં આવે છે. જો ઘટના $A$ પાસા પરની સંખ્યા ત્રણ કરતાં મોટી દર્શાવે અને ઘટના $B$ એ પાસા પરની સંખ્યા પાંચ કરતાં નાની દર્શાવે છે.તો $P\left( {A \cup B} \right)$ મેળવો.
જો વિર્ધાથી ગણિત,ભૌતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાનમાં પાસ થાય તેની સંભાવના અનુક્રમે $m, p$ અને $c$ છે.આ વિષયમાંથી,વિર્ધાથી ઓછામાં ઓછા એક વિષયમાં પાસ થાય તેની શક્યતા $75\%$ છે,ઓછામાં ઓછા બે વિષયમાં પાસ થાય તેની શક્યતા $50\%$, ફક્ત બે વિષયમાં પાસ થાય તેની શક્યતા $40\%$ છે.તો નીચેના પૈકી કયો સંબંધ સત્ય બને.
ભારતને ટોસ જીતવાની સંભાવના $3/4$ છે. જો તે ટોસ જીતે, તો મેચ જીતવાની સંભાવના $4/5$ થાય નહિતર માત્ર $1/2$ થાય તો ભારત મેચ જીતે તેની સંભાવના મેળવો.
જો ત્રણ પેટી માં રહેલા દડોઓ $3$ સફેદ અને $1$ કાળો, $2$ સફેદ અને $2$ કાળો, $1$ સફેદ અને $3$ કાળો દડો છે. જો એક દડો યાર્દચ્છિક રીતે દરેક પેટીમાંથી પસંદ કરવામાં આવે છે તો પસંદ થયેલ દડોઓ $2$ સફેદ અને $1$ કાળો હોય તેની સંભાવના મેળવો.
ત્રણ ઘટનાઓ $A, B$ અને $C,$ માટે $P($ માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $) = {p^2},$ કે જ્યાં $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.