કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ
$ < \frac{1}{4}$
$ > \frac{1}{4}$
$ \ge \frac{1}{2}$
એકપણ નહિ.
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
એન્ટી એરક્રાફટ ગન વડે દુશ્મનના વિમાનો પહેલાં, બીજા અને ત્રીજા પ્રહાર વડે તોડી પાડવાની સંભાવના અનુક્રમે $0.6, 0.7$ અને $0.1$ છે. તો ગન વડે વિમાનને તોડી પાડવાની સંભાવના કેટલી થાય ?
આવતા $10$ વર્ષમાં ક્રિષ્ના જીવતો રહેવાની સંભાવના $7/15$ અને હરિ જીવતો રહેવાની સંભાવના $7/10$ હોય, તો આવતા $10$ વર્ષ દરમિયાન ક્રિષ્ના અને હરિ બંને મૃત્યુ પામવાની સંભાવના કેટલી થાય ?
જો $A, B, C$ અનુક્રમે $5$ માંથી $4$ વાર, $4$ માંથી $3$ વાર અને $3$ માંથી $2$ વાર નિશાન સાધી શકે છે તો, તે પૈકી ચોક્કસ બે નિશાન સાધી શકે તેવી સંભાવના કેટલી થાય ?