किन्ही भी दो स्वतन्त्र घटनाओं ${E_1}$ व ${E_2},$ के लिए $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ है
$ \le \frac{1}{4}$
$ > \frac{1}{4}$
$ \ge \frac{1}{2}$
इनमें से कोई नहीं
मान लें $E$ तथा $F$ दो घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{3}{5}, P ( F )=\frac{3}{10}$ और $P ( E \cap F )=\frac{1}{5}$ तब क्या $E$ तथा $F$ स्वतंत्र हैं?
यदि $P ( A )=\frac{3}{5}, P ( B )=\frac{1}{5}$ और $A$ तथा $B$ स्वतंत्र घटनाएँ हैं तो $P ( A \cap B )$ ज्ञात कीजिए।
एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
यदि $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ एवं $P(A \cap B) = \frac{7}{{12}},$ तो $P\,(A' \cap B')$ का मान है