7.Binomial Theorem
medium

पूर्णांकों $n$ तथा $r$ के लिए,

माना $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{cc}{ }^{ n } C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ तो $k$ का वह अधिकतम मान, जिसके लिए, योगफल $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ 1\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ का अस्तित्व है, ........... |

A

Not define

B

$24$

C

$36$

D

$20$

(JEE MAIN-2021)

Solution

$\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$

${ }^{25} C _{ k }+{ }^{25} C _{ k +1}$

${ }^{26} C _{ k +1}^{  }$

as ${ }^{ n } C _{ r }$ is defined for all values of $n$ as will as r so ${ }^{26} C _{ k +1}$ always exists

Now $k$ is unbounded so maximum value is not defined.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.