पूर्णांकों $n$ तथा $r$ के लिए,
माना $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{cc}{ }^{ n } C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ तो $k$ का वह अधिकतम मान, जिसके लिए, योगफल $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ 1\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ का अस्तित्व है, ........... |
Not define
$24$
$36$
$20$
यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ का मान है
श्रेणी $2 .{ }^{20} C _{0}+5 .{ }^{20} C _{1}+8 .{ }^{20} C _{2}+11 .{ }^{20} C _{3}+\ldots +62 .{ }^{20} C _{20}$ का योग बराबर है
$\sum_{r=0}^{6}\left({ }^{6} C _{r} \cdot{ }^{6} C _{6- r }\right)$ का मान बराबर है
यदि $\sum \limits_{ k =1}^{10} K ^2\left(10_{ C _{ K }}\right)^2=22000 L$ है, तो $L$ बराबर $..............$ है।