Trigonometrical Equations
hard

સમીકરણ $\cos x - x + \frac{1}{2} = 0$ નું એક બીજ . . . . . અંતરાલમાં આવેલ છે.

A

$\left[ {0,\,\frac{\pi }{2}} \right]$

B

$\left[ { - \frac{\pi }{2},\,0} \right]$

C

$\left[ {\frac{\pi }{2},\,\pi } \right]$

D

$\left[ {\pi ,\frac{{3\pi }}{2}} \right]$

Solution

(a) $f(x) = \cos x – x + \frac{1}{2}$,

$f(0) = \frac{3}{2} > 0$

$f\left( {\frac{\pi }{2}} \right) = 0 – \frac{\pi }{2} + \frac{1}{2} = \frac{{1 – \pi }}{2} < 0$,

                                                 $\left( \because {\;\pi  = \frac{{22}}{7}{\rm{ nearly}}} \right)$

$\therefore$  One root lies in the interval $\left[ {0,\,\frac{\pi }{2}} \right]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.