સમીકરણ $2\sqrt 3 \cos \theta = \tan \theta $ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{3}$
$n\pi + {( - 1)^n}\frac{\pi }{4}$
જો ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ ના ઉકેલોની સંખ્યા ..... છે
જો $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ એ મહતમ હોય તો $A$ ની કિમત મેળવો.