In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement ?
If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$
Consider the sets $A$ and $B$ of $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$ Find $A \cap B .$
$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is