यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$
It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$
$\therefore a+b=3$ and $a b=p$ .......$(1)$
Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$
$\therefore c+d=12$ and $c d=q$ .........$(2)$
It is given that $a, b, c, d$ are in $G.P.$
Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$
From $(1)$ and $(2)$
We obtain $x+x y=3 \Rightarrow x(1+r)=3$
$x r^{2}+x^{3}=12$
$\Rightarrow x r^{2}(1+r)=12$
On dividing, we obtain
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$
When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$
Case $I:$ When $r=2$ and $x=1, \quad a b=x^{2} r=2, \quad c d=x^{2} r^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Case $II:$
When $r=-2, x=-3, a b=x^{2} r=-18, c d=x^{2} r^{5}=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$
यदि $n$ विषम या सम हो,तो श्रेणी $1 - 2 + 3 - 4 + 5 - 6 + ......$ के $n$ पदों का योग होगा
यदि ${\log _3}2,\;{\log _3}({2^x} - 5)$व ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ समान्तर श्रेणी में हों, तो $x$ के मान होंगे
दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है
माना $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}, \ldots .$ एक समांतर श्रेढ़ी में हैं। यदि $a_{3}+a_{7}+a_{11}+a_{15}=72$ है, तो उसके प्रथम $17$ पदों का योग बराबर है
किसी बहुभुज के अन्त: कोण समान्तर श्रेणी में हैं। यदि सबसे छोटा कोण ${120^o}$ और सार्वअन्तर $5^o$ है, तो भुजाओं की संख्या होगी