यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$

$\therefore a+b=3$ and $a b=p$          .......$(1)$

Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$

$\therefore c+d=12$ and $c d=q$           .........$(2)$

It is given that $a, b, c, d$ are in $G.P.$

Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$

From $(1)$ and $(2)$

We obtain $x+x y=3 \Rightarrow x(1+r)=3$

$x r^{2}+x^{3}=12$

$\Rightarrow x r^{2}(1+r)=12$

On dividing, we obtain

$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$

$\Rightarrow r^{2}=4$

$\Rightarrow r=\pm 2$

When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$

When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$

Case $I:$ When $r=2$ and $x=1, \quad a b=x^{2} r=2, \quad c d=x^{2} r^{5}=32$

$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$

i.e., $(q+p):(q-p)=17: 15$

Case $II:$

When $r=-2, x=-3, a b=x^{2} r=-18, c d=x^{2} r^{5}=-288$

$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$

i.e., $(q+p):(q-p)=17: 15$

Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$

Similar Questions

$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है

यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।

$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।

दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।

यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?

  • [JEE MAIN 2019]