श्रेणी $2,\,5,\,8...$ के प्रथम $2n$ पदों का योग, श्रेणी $57,\,59,\,61...$ के प्रथम $n$  पदों के योग के बराबर हो तो $n$ का मान होगा

  • [IIT 2001]
  • A

    $10$

  • B

    $12$

  • C

    $11$

  • D

    $13$

Similar Questions

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=\frac{n}{n+1}$

किसी समांतर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ तथा $q$ वाँ पद $\frac{1}{p}$, हो तो सिद्ध कीजिए कि प्रथम $p q$ पदों का योग $\frac{1}{2}(p q+1)$ होगा जहाँ $p \neq q$

यदि $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ समान्तर श्रेणी के क्रमागत पद हों, तो ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ होंगे

यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है 

  • [JEE MAIN 2019]

$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।