श्रेणी $2,\,5,\,8...$ के प्रथम $2n$ पदों का योग, श्रेणी $57,\,59,\,61...$ के प्रथम $n$ पदों के योग के बराबर हो तो $n$ का मान होगा
$10$
$12$
$11$
$13$
मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:
यदि किसी श्रेणी के प्रथम $n$ पदों का योगफल $5{n^2} + 2n$ हो, तो उसका द्वितीय पद है|
किसी समांतर श्रेणी में प्रथम पद $2$ है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि $20$ वाँ पद $-112$ है।
यदि $a,\;b,\;c,\;d,\;e,\;f$ समान्तर श्रेणी में हों, तो $e - c$ का मान होगा
समांतर श्रेणी $3,7,11,15...$ के कितने पदों का योग $406$ होगा