જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$
Given that,
$\tan A =\cot B$
$\tan A=\tan \left(90^{\circ}-B\right)$
$A=90^{\circ}-B$
$A+B=90^{\circ}$
આકૃતિ માં,$\tan P-\cot R$ શોધો.
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
$\triangle$ $ABC$માં $B$ કાટખૂણો છે, $AB = 5$ સેમી અને $\angle ACB =30^{\circ}$ (જુઓ આકૃતિ). તો બાજુ $BC$ અને $AC$ની લંબાઈ શોધો.
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=…….$
ત્રિકોણમિતીય ગુણોતરો $\cos A ,$ $\tan A$ અને $\sec A$ ને $\sin A$ ના સ્વરૂપમાં દર્શાવો.
Confusing about what to choose? Our team will schedule a demo shortly.