यदि $\tan A =\cot B ,$ तो सिद्ध कीजिए कि $A + B =90^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that,

$\tan A =\cot B$

$\tan A=\tan \left(90^{\circ}-B\right)$

$A=90^{\circ}-B$

$A+B=90^{\circ}$

Similar Questions

आकृति में, $\tan P - cot R$ का मान ज्ञात कीजिए।

दिखाइए कि

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =\frac{1}{\sqrt{3}}$, तो निम्नलिखित के मान ज्ञात कीजिए:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

सर्वसमिका $\sec ^{2} \theta=1+\tan ^{2} \theta$ का प्रयोग करके सिद्ध कीजिए कि

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$