સમીકરણ ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
$1$
$2$
અંનત
એકપણ નહી.
સમીકરણ ${x^{{{\log }_x}{{(1 - x)}^2}}} = 9\,\,$ નો ઉકેલગણ.......છે.
ધારોકે $x_1, x_2, x_3, x_4$ એ સમીકરણ $4 x^4+8 x^3-17 x^2-12 x+9=0$ નાં બીજ છે અને $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. તો $m$ નું મૂલ્ય ............ છે.
જો $a, b, c, d$ અને $p$ ભિન્ન વાસ્તવિક સંખ્યાઑ છે કે જેથી $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$ થાય તો ...
જો વિધેય $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ ની મહતમ અને ન્યૂનતમ કિમંતો નો સરવાળો $\frac{m}{n}$ છે કે જ્યાં $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. તો $\mathrm{m}+\mathrm{n}$ ની કિમંત મેળવો.
જો $P(x) = x^3 - ax^2 + bx + c$ જ્યાં $a, b, c \in R$ ને પૂર્ણાક ઉકેલો મળે કે જેથી $P(6) = 3$, થાય તો $' a '$ ની કિમત ......... શક્ય નથી