समीकरण $x^4-3 x^3-2 x^2+3 x+1=10$ के सभी मूलों के घनों का योगफल है
$34$
$36$
$44$
$46$
मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :
समीकरण ${x^4} - 2{x^3} + x = 380$ के मूल हैं
यदि $x$ वास्तविक है तथा $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}}$ हो, तब
यदि समीकररण $x^2-7 x-1=0$ के मूल $a$ तथा $b$ हैं, तो $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ का मान बराबर _______________ है।
सभी $a \in \mathbb{R}$, जिनके लिए समीकरण $\mathrm{x}|\mathrm{x}-1|+|\mathrm{x}+2|+\mathrm{a}=0$ का मात्र एक वास्तविक मूल है :