माना $10 A.P.$, जिनके प्रथम पद $1,2,3, \ldots, 10$ तथा आर्व अंतर क्रमशः $1,3,5, \ldots, 19$ हैं, के $12$ पदों का योग क्रमश: $\mathrm{s}_1, \mathrm{~s}_2, \mathrm{~s}_3, \ldots, \mathrm{s}_{10}$ है। तो $\sum_{\mathrm{i}=1}^{10} \mathrm{~s}_{\mathrm{i}}$ बराबर है

  • [JEE MAIN 2023]
  • A

    $7380$

  • B

    $7220$

  • C

    $7360$

  • D

    $7260$

Similar Questions

किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए

$(q-r) a+(r-p) b+(p-q) c=0$

किसी समूह की $50$ सँख्याओं का समान्तर माध्य $38$ है। यदि समूह की दो संख्यायें $55$ तथा $45$ हटा दी जायें, तब शेष संख्याओं के समूह का समान्तर माध्य है

माना कि $AP ( a ; d )$ एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद $a$ तथा सर्वान्तर (common difference) $d >0$ है। यदि $AP (1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap AP (3 ; 7)=$ $AP ( a ; d )$ है, तब $a + d$ बराबर . . . . .

  • [IIT 2019]

माना कि अनुक्रम $a_{n}$ निम्नलिखित रूप में परिभाषित है

${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$

तो अनुक्रम के पाँच पद ज्ञात कीजिए तथा संगत श्रेणी लिखिए।

दो समान्तर श्रेणीयों $3,7,11, \ldots .407$ एवं $2,9,16, \ldots .709$ में उभयनिष्ठ पदों की संख्या है।

  • [JEE MAIN 2020]