एक समान्तर श्रेणी के $m$ व $n$ पदों के योगों का अनुपात ${m^2}:{n^2}$ है, तो $m$ वें व $n$ वें पदों का अनुपात होगा
$\frac{{m - 1}}{{n - 1}}$
$\frac{{n - 1}}{{m - 1}}$
$\frac{{2m - 1}}{{2n - 1}}$
$\frac{{2n - 1}}{{2m - 1}}$
तीन समांतर श्रेणियों
$3,7,11,15, \ldots \ldots . . . ., 399$,
$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा
$2,7,12,17, \ldots \ldots . ., 197$,
के उभ्यनिष्ठ पदों का योग है ____________I
क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है
यदि $\alpha ,\;\beta ,\;\gamma $ क्रमश: $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ के गुणोत्तर माध्य हों जहाँ $a,\;b,\;c$ समान्तर श्रेणी में हैं, तो ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ होंगे
दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$