एक समान्तर श्रेणी के $m$ व $n$ पदों के योगों का अनुपात ${m^2}:{n^2}$ है, तो $m$ वें व $n$ वें पदों का अनुपात होगा
$\frac{{m - 1}}{{n - 1}}$
$\frac{{n - 1}}{{m - 1}}$
$\frac{{2m - 1}}{{2n - 1}}$
$\frac{{2n - 1}}{{2m - 1}}$
यदि ${S_k}$ किसी समान्तर श्रेणी के $k$ पदों का योगफल है जिसके प्रथम पद एवं सार्वअन्तर क्रमश: $‘a’$ व $‘d’$ हैं, तो $\frac{{{S_{kn}}}}{{{S_n}}}$,$n$ से स्वतंत्र होगा यदि
समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है
यदि किसी श्रेणी के प्रथम $n$ पदों का योगफल $5{n^2} + 2n$ हो, तो उसका द्वितीय पद है|
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है