જો $R$ એ $m$ ઘટક ધરાવતા શાન્ત ગણ $A$ થી $n$ ઘટક ધરાવતા શાન્ત ગણ $B$ પરનો સંબંધ હોય તો $A$ થી $B$ પરના સંબંધની કુલ સંખ્યા મેળવો.
${2^{mn}}$
${2^{mn}} - 1$
$2mn$
${m^n}$
સંબંધો $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ અને $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$, માંથી
ધારો કે $f: X \rightarrow Y$ વિધેય છે. $X$ પર સંબંધ $R$ એ $R =\{(a, b): f(a)=f(b)\}$ દ્વારા આપેલ છે. $R$ એ સામ્ય સંબંધ છે કે નહિ તે ચકાસો.
સાબિત કરો કે સમતલમાં આવેલાં બિંદુઓના ગણ $\mathrm{A}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ ઊગમબિંદુથી બિંદુ $\mathrm{P}$ નું અંતર એ ઊગમબિંદુથી બિંદુ $\mathrm{Q}$ ના અંતર જેટલું જ છે; હોય, તો $\mathrm{R}$ એ સામ્ય સંબંધ છે. સાબિત કરો કે ઊગમબિંદુ સિવાયના બિંદુ ને સાથે સંબંધ $\mathrm{R}$ ધરાવતા બધાં જ બિંદુઓનો ગણ એ $\mathrm{P}$ માંથી પસાર થતું અને ઊગમબિંદુ કેન્દ્રવાળું વર્તુળ છે.
ધારોકે $A =\{1,2,3,4, \ldots ., 10\}$ અને $B =\{0,1,2,3,4\}$. સંબંધ $R =\left\{( a , b ) \in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ માં ધટકોની સંખ્યા $..........$ છે.
સંબંધ $R$ એ $n \times n$ કક્ષાના વાસ્તવિક શ્રેણિક $A$ અને $B$ માટે આ મુજબ વ્યાખ્યાયિત છે : $"ARB$ તોજ અસ્તિત્વ ધરાવે જો કોઈ શૂન્યતર શ્રેણિક $P$ હોય કે જેથી $PAP ^{-1}= B "$ થાય તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?