8. Sequences and Series
hard

यदि $\log _e a, \log _e b, \log _e c$ एक $A.P.$ में हैं तथा $\log _e a-\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ भी एक $A.P.$ में हैं, तो $a: b: c$ बराबर है ..................

A

 $9: 6: 4$

B

 $16: 4: 1$

C

 $25: 10: 4$

D

 $6: 3: 2$

(JEE MAIN-2024)

Solution

$\log _e a, \log _e b, \log _e c$ are in $ A.P.$

$\therefore \mathrm{b}^2=\mathrm{ac}$

Also

$\log _{\circ}\left(\frac{a}{2 b}\right), \log _{\circ}\left(\frac{2 b}{3 c}\right), \log _{\circ}\left(\frac{3 c}{a}\right)$ are in $A.P.$

$\left(\frac{2 b}{3 \mathrm{c}}\right)^2=\frac{\mathrm{a}}{2 \mathrm{~b}} \times \frac{3 \mathrm{c}}{\mathrm{a}} $

$ \frac{\mathrm{b}}{\mathrm{c}}=\frac{3}{2}$

Putting in eq. $(i)$ $b^2=a \times \frac{2 b}{3}$

$ \frac{a}{b}=\frac{3}{2}$

$ a: b: c=9: 6: 4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.