यदि $z_1$ व $z_2$ कोईभी सम्मिश्र संख्याएँ हैं, तब $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ बराबर है

  • A

    $|{z_1}|$

  • B

    $|{z_2}|$

  • C

    $|{z_1} + {z_2}|$

  • D

    $|{z_1} + {z_2}| + |{z_1} - {z_2}|$

Similar Questions

यदि $z$ व $\omega $ दो अशून्य सम्मिश्र संख्याएँ इस प्रकार हों, कि $|z\omega |\, = 1$ तथा  $arg(z) - arg(\omega ) = \frac{\pi }{2}$ हो, तब $\bar z\omega $ का मान है

  • [AIEEE 2003]

यदि $|z - 25i| \le 15$, तब $|\max .amp(z) - \min .amp(z)| = $

माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता

यदि $z$ पूर्णत: वास्तविक संख्या इस प्रकार हो कि ${\mathop{\rm Re}\nolimits} (z) < 0$, तब    $arg(z)$=

यदि ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ व $z$ एक सम्मिश्र संख्या इस प्रकार है कि  $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4}$, तो $|z - 7 - 9i|$ का मान है

  • [IIT 1990]