જો $|{z_1}|\, = \,|{z_2}|$ અને $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, તો ${z_1} + {z_2}$ = . ..

  • A

    $0$

  • B

    શુદ્ધ કાલ્પનિક

  • C

    શુદ્ધ વાસ્તવિક

  • D

    એકપણ નહીં.

Similar Questions

જો $z$ અને $\omega$ એ બે સંકર સંખ્યા છે કે જેથી $|z \omega|=1$ અને $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$ હોય તો  $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ મેળવો.

 ( અહી $arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાંક દર્શાવે છે.)

  • [JEE MAIN 2021]

જો $z$ એ સંકર સંખ્યા હોય, તો $z.\,\overline z = 0$ થવા માટે . . . .

જો $z_1$ અને $z_2$ એ એવી બે સંકર સંખ્યાઓ છે કે જેથી $|z_1 + z_2|$ = $1$ અને $\left| {z_1^2 + z_2^2} \right|$ = $25$  થાય તો $\left| {z_1^3 + z_2^3} \right|$ ની ન્યૂનતમ કિમત મેળવો 

જો $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ એ વાસ્તવિક કિમંત હોય તો $\sin \theta+\mathrm{i} \cos \theta$  નો કોણાંક મેળવો.

  • [JEE MAIN 2020]

વિધાનો

વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$

માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને

વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી

$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$

  • [JEE MAIN 2024]