समीकरण ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$के वास्तविक मूलों की संख्या है

  • [IIT 1982]
  • A

    $1$

  • B

    $2$

  • C

    अनन्त

  • D

    इनमें से कोई नहीं

Similar Questions

समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:

  • [JEE MAIN 2023]

माना द्विघात समीकरण  $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है

  • [JEE MAIN 2019]

समीकरण ${e^x} - x - 1 = 0$ के होंगे     

समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा

यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$

का एक गुणनखण्ड हो, तो $p = $

  • [IIT 1975]