જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ તો $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

  • A

    $\frac{{n!}}{{n!n!}}$

  • B

    $\frac{{(2n)!}}{{n!n!}}$

  • C

    $\frac{{(2n)!}}{{n!}}$

  • D

    એકપણ નહિ.

Similar Questions

$(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + ...... + x^{100})$ ના વિસ્તરણમાં બહુપદીનો ઘાતાંક મેળવો 

${(1 + x + {x^2})^n}$ ના સહગુણકનો સરવાળો મેળવો.

જો ${a_1},{a_2},{a_3},{a_4}$ એ ${(1 + x)^n}$ ની વિસ્તરણના ચાર ક્રમિક પદ હોય , તો $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$ =

  • [IIT 1975]

${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .

  • [IIT 1971]