If $a,b,c$ are in $A.P$., then the value of $\left| {\,\begin{array}{*{20}{c}}{x + 2}&{x + 3}&{x + a}\\{x + 4}&{x + 5}&{x + b}\\{x + 6}&{x + 7}&{x + c}\end{array}\,} \right|$ is
$x - (a + b + c)$
$9{x^2} + a + b + c$
$a + b + c$
$0$
Evaluate $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$
Let $D_1 =$ $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\c&d&{c + d}\\a&b&{a - b}\end{array}\,} \right|$ and $D_2 =$ $\left| {\,\begin{array}{*{20}{c}}a&c&{a + c}\\b&d&{b + d}\\a&c&{a + b + c}\end{array}\,} \right|$ then the value of $\frac{{{D_1}}}{{{D_2}}}$ where $b \ne 0$ and $ad \ne bc$, is
$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $
Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$