જો $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$ તો $x =$
$0$
$2$
$3$
$1$
ધારો કે $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ અને $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, તો . . .
ધારો કે સુરેખ સમીકરણ સંહતિ
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
ને અનન્ય ઉએેલ $\left( x ^{*}, y ^{*}, z ^{*}\right)$ છે. જો $\left(\alpha, x ^{*}\right),\left( y ^{*}, \alpha\right)$ અને $\left( x ^{*},- y ^{*}\right)$ તો $\alpha$સમરેખ બિંદુઓ હોય. તો $\alpha$ ની તમામ શક્ય કિંમતોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો ........ છે.
જેના માટે $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ થાય તેવી $\alpha$ ની કિંમત..................... અંતરાલમાં આવે છે.
સમીકરણની સંહતિ $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
જો $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$ હોય, તો $|A|$ શોધો.