3 and 4 .Determinants and Matrices
easy

જો $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, તો

A

$a$ એ એકનું ઘનમૂળ છે.

B

$b$ એ એકનું ઘનમૂળ છે.

C

$\left( {\frac{a}{b}} \right)$ એ એકનું ઘનમૂળ છે. 

D

$\left( {\frac{a}{b}} \right)$ એ -1 નું ઘનમૂળ છે.

Solution

(d) Given, $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right|\, = \,0.$

Expanding the given determinant, we get $a({a^2} – 0) – b(0 – {b^2}) = 0$ or ${a^3} + {b^3} = 0.$

This equation may be written as ${\left( {\frac{a}{b}} \right)^3} = – 1.$

Therefore, $\left( {\frac{a}{b}} \right)$ is one of the cube roots of $ -1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.