3.Trigonometrical Ratios, Functions and Identities
medium

If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then

A

$\tan x = 1$

B

$\tan 2x = 1$

C

$\tan 3x = 1$

D

None of these

Solution

(c) $\tan x + \tan \,\left( {\frac{\pi }{3} + x} \right) + \tan \,\left( {\frac{{2\pi }}{3} + x} \right)$

$ = \tan x + \frac{{\tan x + \sqrt 3 }}{{1 – \sqrt 3 \,\tan x}} + \frac{{\tan x – \sqrt 3 }}{{1 + \sqrt 3 \,\tan x}}$

$ = \tan x + \frac{{8\tan x}}{{1 – 3{{\tan }^2}x}} $

$= \frac{{3\,(3\tan x – {{\tan }^3}x)}}{{1 – 3{{\tan }^2}x}} = 3\tan 3x$

Therefore, the given equation is 

$\Rightarrow$ $3\tan 3x = 3$==> $\tan 3x = 1.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.