If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then
$\tan x = 1$
$\tan 2x = 1$
$\tan 3x = 1$
None of these
If $\sin x + \cos x = \frac{1}{5},$ then $\tan 2x$ is
In the figure, $\theta_1+\theta_2=\frac{\pi}{2}$ and $\sqrt{3}(B E)=4(A B)$. If the area of $\triangle CAB$ is $2 \sqrt{3}-3$ unit $^2$, when $\frac{\theta_2}{\theta_1}$ is the largest, then the perimeter (in unit) of $\triangle CED$ is equal to $...........$.
If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is
The value of $cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ is equal to :
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :