यदि $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $ तथा $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, तब $\theta$ का मान होगा
$\alpha /2$
$\alpha $
$2\alpha $
$\alpha /6$
$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$
यदि $x + \frac{1}{x} = 2\,\cos \theta ,$ तो ${x^3} + \frac{1}{{{x^3}}} = $
यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
निम्नलिखित को सिद्ध कीजिए
$\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$