3.Trigonometrical Ratios, Functions and Identities
medium

જો $A + B + C = {180^o},$ તો $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $

A

$8\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

B

$8\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

C

$8\,\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

D

$8\,\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

Solution

(b) Here ${D^r} = 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

and ${N^r} = 4\sin A\sin B\sin c$

$\therefore L.H.S. = \frac{{{N^r}}}{{{D^r}}}$

and $\sin A = 2\sin \frac{A}{2}\cos \frac{A}{2}$ .

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.