જો $A + B + C = {180^o},$ તો $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $
$8\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$8\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
જો $\alpha + \beta = \frac{\pi }{2}$ અને $\beta + \gamma = \alpha ,$ તો $\tan \,\alpha $ મેળવો.
${\cos ^2}\,{10^o}\,\, - \,\cos \,\,{10^o}\,\cos \,\,{50^o}\, + \,{\cos ^2}\,{50^o}$ ની કિમત ..... થાય.
$\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ =
સમીકરણ ${\sin ^2}\,2\theta + {\cos ^4}\,2\theta = \frac{3}{4}$ ના $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ ના બધા ઉકેલો નો સરવાળો .......... થાય.
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $