જો $4{\sin ^4}x + {\cos ^4}x = 1,$ તો $x =$
$n\pi $
$n\pi \pm {\sin ^{ - 1}}\frac{2}{5}$
$n\pi + \frac{\pi }{6}$
એકપણ નહિ.
અહી $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ આપલે છે. તો ગણ $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ ની સભ્ય સંખ્યા $...$ થાય.
$\tan 5\theta = \cot 2\theta $ નો વ્યાપક ઉકેલ મેળવો.
$($ જ્યાં $n \in Z)$
જો $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ અને $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ ,હોય તો $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
જો $\theta \in [0, 4\pi ]$ એ સમીકરણ $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ નું સમાધાન કરે છે અને $\theta $ ની બધી કિમતોનો સરવાળો $k\pi $ હોય તો $k$ ની કિમત મેળવો .
$x \in (0,4\pi )$ માં સમીકરણ $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ ના ઉકેલોનો સરવાળો મેળવો