Trigonometrical Equations
easy

यदि $\sin 2\theta  = \cos \theta ,\,\,0 < \theta  < \pi $, तो $\theta $ के सम्भव मान हैं

A

${90^o},{60^o},{30^o}$

B

${90^o},{150^o},{60^o}$

C

${90^o},{45^o},{150^o}$

D

${90^o},{30^o},{150^o}$

Solution

$\sin 2\theta  = \cos \theta  \Rightarrow \cos \theta  = \cos \left( {\frac{\pi }{2} – 2\theta } \right)$

$ \Rightarrow $ $\theta  = 2n\pi  \pm \left( {\frac{\pi }{2} – 2\theta } \right)$

$\Rightarrow \theta  \pm 2\theta  = 2n\pi  \pm \frac{\pi }{2}$

अर्थात्, $3\theta  = 2n\pi  + \frac{\pi }{2} $

$\Rightarrow \theta  = \frac{1}{3}\left( {2n\pi  + \frac{\pi }{2}} \right)$

तथा $ – \theta  = 2n\pi  – \frac{\pi }{2} \Rightarrow \theta  =  – \left( {2n\pi  – \frac{\pi }{2}} \right)$

अत: $\theta $ के मान $0$ और $\pi $ के बीच $\frac{\pi }{6},\,\frac{\pi }{2},\,\frac{{5\pi }}{6}$

अर्थात् ${30^o},\,{90^o},\,{150^o}$ हैं।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.