यदि $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, तो $\theta $ के सम्भव मान हैं
${90^o},{60^o},{30^o}$
${90^o},{150^o},{60^o}$
${90^o},{45^o},{150^o}$
${90^o},{30^o},{150^o}$
त्रिभुज $P Q R$ में, $P$ वृहत्तम कोण है तथा $\cos P=\frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अन्तःवृत्त भुजाओं $P Q, Q R$ तथा $R P$ को क्रमशः $N, L$ तथा $M$ पर इस तरह स्पर्श करता है कि $P N, Q L$ तथा $R M$ की लम्बाईयाँ क्रमागत सम पूर्ण संख्याएं है। तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाईयाँ) है (हैं)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
समीकरण $4{\cos ^2}x + 6$${\sin ^2}x = 5$ का व्यापक हल है
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
समीकरणों $\sin \theta = - \frac{1}{2}$ तथा $\tan \theta = \frac{1}{{\sqrt 3 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है
माना अन्तराल $(0,10)$ में समीकरण $\sin x=\cos ^2 x$ के हलों की संख्या है।