यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta  + \frac{\pi }{4}} \right)$ का मान होगा  

  • A

    $\frac{1}{{\sqrt 2 }}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{1}{{2\sqrt 2 }}$

  • D

    $\frac{{\sqrt 3 }}{2}$

Similar Questions

समीकरणों  $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं  

समीकरण $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ के अंतराल $[0,2 \pi]$ में भिन्न हलों की संख्या ....... है |

  • [JEE MAIN 2020]

माना $f:[0,2] \rightarrow R$ एक फलन है जो

$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$

द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा

  • [IIT 2020]

समीकरण ${\tan ^2}\theta  + \sec 2\theta  -  = 1$ को सन्तुष्ट करने वाला $\theta $ का व्यापक हल है

  • [IIT 1996]

हर धनात्मक वास्तविक संख्या $\lambda$ के लिए मान लीजिए कि $A_\lambda$ उन सभी प्राकृतिक संख्याओं $n$ का समुच्चय है जो $|\sin (\sqrt{n+1})-\sin (\sqrt{n})| < \lambda$ को संतुष्ट करती है. यदि $A_\lambda^c$, प्राकृतिक संख्याओं के समुच्चय में $A_\lambda$ का पूरक है तो

  • [KVPY 2016]