Trigonometrical Equations
hard

જો $\cot (\alpha + \beta ) = 0,$ તો $\sin (\alpha + 2\beta ) = $

A

$\sin \alpha $

B

$\cos \alpha $

C

$\sin \beta $

D

$\cos 2\beta $

Solution

(a) Given, $\cot (\alpha + \beta ) = 0 \Rightarrow \cos (\alpha + \beta ) = 0$

==> $\alpha + \beta = (2n + 1)\frac{\pi }{2},n \in I$

$\therefore$ $\sin (\alpha + 2\beta ) = \sin (2\alpha + 2\beta – \alpha )$

$=\sin {\rm{ }}[(2n + 1){\rm{ }}\pi – \alpha ]$

$ = \sin (\,2n\pi + \pi – \alpha \,)$ = $\sin (\,\pi – \alpha \,)\, = \sin \alpha $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.