यदि $e$ तथा $e’$ क्रमश: दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ तथा अतिपरवलय $5{x^2} - 4{y^2} = 45$ की उत्केन्द्रता हो, तो $ee' = $
$9$
$4$
$5$
$1$
यदि सरल रेखा $x\cos \alpha + y\sin \alpha = p$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा हो, तब
अतिपरवलय $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 3$ के बिन्दु $(6, 4)$ पर अभिलम्ब का समीकरण होगा
यदि एक अतिपरवलय के संयुग्मी अक्ष (conjugate axis) की लंबाई $5$ है तथा इसकी नाभियाँ के बीच की दूरी $13$ है, तो इस अतिपरवलय की उत्केंद्रता है
शांकवों $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ तथा $\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1$ की उभयनिष्ठ स्पर्श रेखा का समीकरण है
माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, बिंदु $(2 \sqrt{2},-2 \sqrt{2})$ से होकर जाता है। एक परवलय खींचा जाता है जिसकी नाभि, $H$ की धनात्मक भुज वाली नाभि पर है तथा परवलय की नियता $H$ की दूसरी नाभि से होकर जाती है। यदि परवलय की नाभि लंब जीवा की लंबाई, $H$ की नाभि लंब जीवा की लंबाई का $e$ गुना है, जहाँ $e$, $H$ की उत्केन्द्रता है, तो निम्न में से कौन सा बिंदु परवलय पर है ?