माना अतिपरवलय $\frac{\mathrm{x}^2}{16}-\frac{\mathrm{y}^2}{9}=1$ के उत्केन्द्रता $\mathrm{e}_1$ है तथा दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ जो अतिपरवलय की नाभियों से होकर जाता है, की उत्केन्द्रता $\mathrm{e}_2$ है। यदि $\mathrm{e}_1 \mathrm{e}_2=1$ है, तो दीर्घवृत्त की $\mathrm{x}$-अक्ष के समांतर तथा $(0,2)$ से होकर जाने वाली जीवा की लम्बाई है:
$4 \sqrt{5}$
$\frac{8 \sqrt{5}}{3}$
$\frac{10 \sqrt{5}}{3}$
$3 \sqrt{5}$
अतिपरवलय का मानक समीकरण ($x$ - अक्ष के अनुदिश अनुप्रस्थ अक्ष) जिसकी नाभिलम्ब की लम्बाई $9$ इकाई व उत्केन्द्रता $\frac{5}{4}$ है, है
अतिपरवलय $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 3$ के बिन्दु $(6, 4)$ पर अभिलम्ब का समीकरण होगा
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(\pm 7,0), e=\frac{4}{3}$
एक अतिपरवलय, जिसका अनुप्रस्थ अक्ष शांकव $\frac{x^{2}}{3}+\frac{y^{2}}{4}=4$ के दीर्घ अक्ष की दिशा में है तथा जिसके शीर्ष इस शांकव की नाभियों पर है। यदि अतिपरवलय की उत्केन्द्रता $\frac{3}{2}$ है, तो निम्न में से कौन सा बिंदु इस पर स्थित नहीं है ?
यदि एक वृत्त एक आयताकार अतिपरवलय $xy = {c^2}$ को क्रमश: बिन्दुओं $A, B, C$ तथा $D$ पर काटे तथा उनके प्राचल (parameter) क्रमश: ${t_1},\;{t_2},\;{t_3}$ तथा ${t_4}$ हों तो