अतिपरवलय $\frac{{\sqrt {1999} }}{3}({x^2} - {y^2}) = 1$ की उत्केन्द्रता है

  • A

    $\sqrt 3 $

  • B

    $\sqrt 2 $

  • C

    $2$

  • D

    $2\sqrt 2 $

Similar Questions

यदि अतिपरवलयों $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ तथा $\frac{{{y^2}}}{{{b^2}}} - \frac{{{x^2}}}{{{a^2}}} = 1$ की उत्केन्द्रतायें क्रमश:  e तथा ${e_1}$ हों, तो $\frac{1}{{{e^2}}} + \frac{1}{{e_1^2}} = $

समकोणीय अतिपरवलय $xy = {c^2}$ की नाभियों के निर्देशांक हैं  

एक अतिपरवलय, जिसका अनुप्रस्थ अक्ष शांकव $\frac{x^{2}}{3}+\frac{y^{2}}{4}=4$ के दीर्घ अक्ष की दिशा में है तथा जिसके शीर्ष इस शांकव की नाभियों पर है। यदि अतिपरवलय की उत्केन्द्रता $\frac{3}{2}$ है, तो निम्न में से कौन सा बिंदु इस पर स्थित नहीं है ?

  • [JEE MAIN 2016]

वक्र ${x^2} - {y^2} = {a^2}$ की उत्केन्द्रता होगी  

एक अतिपरवलय $4 x^{2}-y^{2}=36$ के बिंदुओ $P$ तथा $Q$ पर स्यर्श रेखाएँ खींची जाती है। यदि यह स्पर्शरखाएँ बिंदु $T(0,3)$ पर काटती हैं, तो $\Delta P T Q$ का क्षेत्रफल (वर्ग इकाइयों में) है

  • [JEE MAIN 2018]