મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .

  • A

    $a < {x_1} \le b$

  • B

    $a \le {x_1} < b$

  • C

    $a < {x_1} < b$

  • D

    $a \le {x_1} \le b$

Similar Questions

આપલે પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?

વિધેય $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ એ $x = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે છે તો  $(2b+c)$ મેળવો.

જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............

જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.

  • [JEE MAIN 2014]

વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .