મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .

  • A

    $a < {x_1} \le b$

  • B

    $a \le {x_1} < b$

  • C

    $a < {x_1} < b$

  • D

    $a \le {x_1} \le b$

Similar Questions

ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી

$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.

નીચેના બે વિધાનો ધ્યાને લો.

$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$

$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,

  • [JEE MAIN 2023]

જો $a + b + c = 0 $ હોય, તો સમીકરણ $3ax^2 + 2bx + c = 0$  ના કેટલા બીજ હોય ?

જો $f(x) = \cos x,0 \le x \le {\pi \over 2}$, તો વાસ્તવિક સંખ્યા $‘c’$ મધ્યકમાન પ્રમેયનો ઉપયોગ કરી ને મેળવો.

વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .

ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in  [1, 6]$ માટે $f (1) = -2$  અને $ f'(x) \geq 2$  હોય, તો......