यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
$P\,(A) + P\,(B) - P\,(AB)$
$P\,(A) - P\,(B)$
$P\,(A) + P\,(B)$
$P\,(A) + P\,(B) + P\,(AB)$
(c) $P(A) + P(B)$ (आधारभूत परिकल्पना).
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $
जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.7, P ( A \cap B )=0.6$
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
माना समुच्चय $S$ में $n$ अवयव हैं व समुच्चय $S$ के दो उपसमुच्चयों को यदृच्छया चुना जाता है तब $A \cup B = S$ व $A \cap B = \phi $ की प्रायिकता है
Confusing about what to choose? Our team will schedule a demo shortly.