If $A$ and $B$ are two independent events such that $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ , then $P(A \cap B)$ is
$\frac {12}{25}$
$\frac {14}{25}$
$\frac {18}{25}$
$\frac {24}{25}$
If $A$ and $B$ an two events such that $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ and $P\,(\bar B) = \frac{1}{3},$ then $P\,(A) = $
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.
An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on the is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3,….., 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$ is
Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is
If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is