- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
एक अतिपरवलय $H$ के शीर्ष $( \pm 6,0)$ है, तथा उत्केन्द्रता $\frac{\sqrt{5}}{2}$ है। माना प्रथम चतुर्थांश में $\mathrm{H}$ के एक बिन्दु पर रेखा $\sqrt{2} \mathrm{x}+\mathrm{y}=2 \sqrt{2}$ के समान्तर अभिलम्ब $\mathrm{N}$ है। यदि $\mathrm{N}$ के $\mathrm{H}$ तथा $\mathrm{y}$-अक्ष के बीच रेखाखंड की लम्बाई $\mathrm{d}$ है, तो $\mathrm{d}^2$ बराबर है_____________.
A
$215$
B
$216$
C
$217$
D
$218$
(JEE MAIN-2023)
Solution

$H : \frac{ x ^2}{36}-\frac{y^2}{9}=1$
equation of normal is $6 x \cos \theta+3 y \cot \theta=45$
$\text { slope }=-2 \sin \theta=-\sqrt{2}$
$\Rightarrow \theta=\frac{\pi}{4}$
Equation of normal is $\sqrt{2} x+y=15$
$P:(a \sec \theta, b \tan \theta)$
$\Rightarrow P (6 \sqrt{2}, 3)$ and $K (0,15)$
$d^2=216$
Standard 11
Mathematics