एक अतिपरवलय $H$ के शीर्ष $( \pm 6,0)$ है, तथा उत्केन्द्रता $\frac{\sqrt{5}}{2}$ है। माना प्रथम चतुर्थांश में $\mathrm{H}$ के एक बिन्दु पर रेखा $\sqrt{2} \mathrm{x}+\mathrm{y}=2 \sqrt{2}$ के समान्तर अभिलम्ब $\mathrm{N}$ है। यदि $\mathrm{N}$ के $\mathrm{H}$ तथा $\mathrm{y}$-अक्ष के बीच रेखाखंड की लम्बाई $\mathrm{d}$ है, तो $\mathrm{d}^2$ बराबर है_____________. 

  • [JEE MAIN 2023]
  • A

    $215$

  • B

    $216$

  • C

    $217$

  • D

    $218$

Similar Questions

अतिपरवलय ${x^2} - 3{y^2} = 2x + 8$ के संयुग्मी अतिपरवलय की उत्केन्द्रता होगी

अतिपरवलय $\frac{x^2}{9}-\frac{y^2}{4}=1$, पर सरल रेखा $2 x-y=1$ के समान्तर स्पर्श रेखाये खींची गयी है। इन स्पर्श रेखाओं के अतिपरवलय पर स्पर्श बिन्दु (points of contacts) निम्न है

$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$

$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$

$(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$

  • [IIT 2012]

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(\pm 7,0), e=\frac{4}{3}$

यदि एक अतिपरवलय के संयुग्मी अक्ष (conjugate axis) की लंबाई $5$ है तथा इसकी नाभियाँ के बीच की दूरी $13$ है, तो इस अतिपरवलय की उत्केंद्रता है 

  • [JEE MAIN 2019]

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(\pm 2,0),$ नाभियाँ $(±3,0)$