यदि एक अतिपरवलय बिन्दु $P (10,16)$ से होकर जाता है तथा इसके शीर्ष $(\pm 6,0)$ पर हैं, तो $P$ पर इसके अभिलम्ब का समीकरण है
$x+2 y=42$
$3 x+4 y=94$
$2 x+5 y=100$
$x+3 y=58$
अतिपरवलय $9{x^2} - 16{y^2} = 144$ पर स्थित किसी बिन्दु की नाभीय दूरियों का अन्तर है
अतिपरवलय $16{x^2} - {y^2} + 64x + 4y + 44 = 0$ के अनुप्रस्थ अक्ष तथा संयुग्मी अक्ष के समीकरण हैं
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}-9 y^{2}=576$
यदि रेखा $L _1$ अतिपरवलय $\frac{ x ^2}{16}-\frac{ y ^2}{4}=1$ की स्पर्श रेखा है तथा रेखा $L _2$ मूलबिंदु से गुजरती हो व रेखा $L _1$ के लम्बवत् हो । यदि रेखा $L _1$ तथा $L _2$ के प्रतिच्छेद बिंदु का बिंदुपथ $\left( x ^2+ y ^2\right)^2=\alpha x ^2+\beta y ^2$ हो, तो $\alpha+\beta$ का मान होगा -
$m$ के किस मान के लिए शांकव $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ का अभिलम्ब$y = mx + \frac{{25\sqrt 3 }}{3}$ है