यदि ऊर्जा $(E)$, वेग $(v)$ तथा बल $(F)$ को मूल राशि माना जाए तो द्रव्यमान की विमा क्या होगी
$E{v^2}$
$E{v^{ - 2}}$
$F{v^{ - 1}}$
$F{v^{ - 2}}$
$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी
सरल आवर्त गति करती किसी वस्तु का आवर्तकाल $T = {P^a}{D^b}{S^c}$ से प्रकट किया जाता है। यहाँ $P = $दाब, $D = $घनत्व और $S = $पृष्ठ तनाव है, तो $a,\,b,\,c$ के मान होंगे
किसी नलिका से बहने वाले द्रव के क्रांतिक वेग $v _{ c }$ की विमाओं को $\left[\eta^{ x } \rho^{ y } r ^{ x }\right]$ से निर्दिप्ट किया जाता है जहाँ $\eta, \rho$ तथा $r$ क्रमश: द्रव का श्यानता गुणांक, द्रव का घनत्व तथा नलिका की त्रिज्या है, तो $x , y$ तथा $z$ क्रमश: मान है
यदि गति $( V )$, त्वरण $( A )$ तथा बल $( F )$ को मूल भौतिक इकाइयाँ मानें तो, यंग प्रत्यास्थता गुणांक की विमा होगी।
यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी