यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी
$\left[ {FV{T^{ - 1}}} \right]$
$\;\left[ {FV{T^{ - 2}}} \right]$
$\;\left[ {F{V^{ - 1}}{T^{ - 1}}} \right]$
$\;\left[ {F{V^{ - 1}}T} \right]$
सरल आवर्त गति करती किसी वस्तु का आवर्तकाल $T = {P^a}{D^b}{S^c}$ से प्रकट किया जाता है। यहाँ $P = $दाब, $D = $घनत्व और $S = $पृष्ठ तनाव है, तो $a,\,b,\,c$ के मान होंगे
एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है
किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।
यदि प्लांक नियतांक $(h)$, निर्वात में प्रकाश की चाल $(c)$ तथा न्यूटन का गुरुत्वाकर्षण नियतांक $(G)$ तीन मौलिक नियतांक हो, तो निम्नलिखित में किसकी विमा लम्बाई की विमा होगी