राशि $X = \frac{{{\varepsilon _0}LV}}{t},$ में ${\varepsilon _0}$ मुक्त आकाश की विद्युतशीलता, $L$ लम्बाई, $V$ विभवान्तर और $t$ समय है, तो $X$ की विमायें समान है

  • [IIT 2001]
  • A

    प्रतिरोध के

  • B

    आवेश के

  • C

    वोल्टेज के

  • D

    धारा के

Similar Questions

यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी

  • [AIEEE 2012]

मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?

$(1)$ बल की विमा (dimension) $L ^{-3}$ है।

$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।

$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।

$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।

  • [IIT 2019]

भौतिकी का एक प्रसिद्ध संबंध किसी कण के 'चल द्रव्यमान (moving mass)' $m$ ' विराम द्रव्यमान (rest mass)' $m_{0}$, इसकी चाल $v$, और प्रकाश की चाल $c$ के बीच है । ( यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छत्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक $c$ को लगाना भूल जाता है । वह लिखता है $: m \frac{m_{0}}{\left(1 \quad v^{2}\right)^{1 / 2}}$ । अनुमान लगाइए कि $c$ कहां लगेगा

एक विमाहीन राशि $P$ के लिये व्यंजक $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x }\right)$ द्वारा दिया जाता है, जहाँ $\alpha$ तथा $\beta$ नियतांक है, $x$ दूरी एवं $k$ बोल्ट्जमान नियतांक है तथा $t$ तापमान है, तो राशि $\alpha$ की विमाएँ होगी :

  • [JEE MAIN 2022]

कोई वस्तु द्रव में गतिशील है। इस पर क्रियाशील श्यान बल, वेग के समानुपाती है, तो समानुपातिक नियतांक की विमा होगी