વિધેય $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ માટે $f^{\prime}\left(\frac{4}{3}\right)=0$ સાથે રોલનું પ્રમેટ પળાતું હોય, તો કમયુક્ત જોડ $(a, b) = ...........$
$(5,8)$
$(-5,8)$
$(5,-8)$
$(-5,-8)$
$f(x)$ એ $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ રોલનું પ્રમેય નું પાલન કરતુ હોય તો
જો વિધેય $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ એ બિંદુ $x = \frac {1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે તો $2b+ c=$
વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ $[1, 3]$ માં રોલ ના પ્રમેયનું પાલન કરે છે તો $a$ અને $b$ મેળવો.