વિધેય $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ માટે $f^{\prime}\left(\frac{4}{3}\right)=0$ સાથે રોલનું પ્રમેટ પળાતું હોય, તો કમયુક્ત જોડ $(a, b) = ...........$
$(5,8)$
$(-5,8)$
$(5,-8)$
$(-5,-8)$
જો $y = f (x)$ અને $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.
ધારો કે $f: \mathbb{R} \rightarrow \mathbb{R}$ એ એવું ત્રીવિક્લનીય વિધેય છે કે જેથી $f(0)=0, f(1)=1, f(2)=-$ $1, f(3)=2$ અને $f(4)=-2$. તો $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime}\right)(x)$ નાં શૂન્યની ન્યૂનતમ સંખ્યા ......... છે.
જો $ f(x) = x^{\alpha} logx, x > 0, f(0) = 0 $ અને $ x \in [0, 1]$ રોલના પ્રમેયનું પાલન કરે, હોય તો $\alpha =$ કેટલા થાય ?
જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$